Quantitative confocal phase imaging by synthetic optical holography.
نویسندگان
چکیده
We demonstrate quantitative phase mapping in confocal optical microscopy by applying synthetic optical holography (SOH), a recently introduced method for technically simple and fast phase imaging in scanning optical microscopy. SOH is implemented in a confocal microscope by simply adding a linearly moving reference mirror to the microscope setup, which generates a synthetic reference wave analogous to the plane reference wave of wide-field off-axis holography. We demonstrate that SOH confocal microscopy allows for non-contact surface profiling with sub-nanometer depth resolution. As an application for biological imaging, we apply SOH confocal microscopy to map the surface profile of an onion cell, revealing nanoscale-height features on the cell surface.
منابع مشابه
Synthetic optical holography for rapid nanoimaging
Holography has paved the way for phase imaging in a variety of wide-field techniques, including electron, X-ray and optical microscopy. In scanning optical microscopy, however, the serial fashion of image acquisition seems to challenge a direct implementation of traditional holography. Here we introduce synthetic optical holography (SOH) for quantitative phase-resolved imaging in scanning optic...
متن کاملHigh-speed line-field confocal holographic microscope for quantitative phase imaging.
We present a high-speed and phase-sensitive reflectance line-scanning confocal holographic microscope (LCHM). We achieved rapid confocal imaging using a fast line-scan CCD camera and quantitative phase imaging using off-axis digital holography (DH) on a 1D, line-by-line basis in our prototype experiment. Using a 20 kHz line scan rate, we achieved a frame rate of 20 Hz for 512x512 pixels en-face...
متن کاملOptical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system.
We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy.
متن کاملComputational optical imaging: Applications in synthetic aperture imaging, phase retrieval, and digital holography
Lee, Dennis Joseph Ph.D., Purdue University, May 2015. Computational Optical Imaging: Applications in Synthetic Aperture Imaging, Phase Retrieval, and Digital Holography. Major Professor: Andrew M. Weiner. Computational imaging has become an important field, as a merger of both algorithms and physical experiments. In the realm of microscopy and optical imaging, an important application is the p...
متن کاملQuantitative phase imaging via Fourier ptychographic microscopy.
Fourier ptychographic microscopy (FPM) is a recently developed imaging modality that uses angularly varying illumination to extend a system's performance beyond the limit defined by its optical components. The FPM technique applies a novel phase-retrieval procedure to achieve resolution enhancement and complex image recovery. In this Letter, we compare FPM data to theoretical prediction and pha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 22 12 شماره
صفحات -
تاریخ انتشار 2014